
REVIEW Open Access

L1 retrotransposition in the soma: a field
jumping ahead
Geoffrey J. Faulkner1,2,3* and Victor Billon3,4

Abstract

Retrotransposons are transposable elements (TEs) capable of “jumping” in germ, embryonic and tumor cells and, as
is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic
genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At
present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals,
based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in
cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of
almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current
state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis
that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely
inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and
propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise
accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives
and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
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Background
Transposable elements (TEs) and their mobilization in
somatic cells were first described by Barbara McClintock’s
celebrated research on Ac/Ds loci in maize [1]. In the
intervening 70 years, somatic transposition (“cut-and--
paste”) and retrotransposition (“copy-and-paste”) of TEs
has been reported throughout the tree of life, including,
for example, in plants [2, 3], insects [4–7], rodents [8–10]
and primates [11]. By definition, mosaic TE insertions are
present in at least one, but not all, cells from an individual.
New TE insertions, or the deletion of existing TE inser-
tions [12], may generate germline as well as somatic mo-
saicism. Indeed, the primary milieu for heritable LINE-1
(L1) retrotransposition in mammals is the early embryo
[13], where new L1 insertions can enter the germline and
contribute genetic diversity to offspring [14–17] whilst po-
tentially also causing somatic mosaicism in the original

host [8, 10, 11, 18]. As embryonic development continues,
L1 mobilization appears to become more lineage-restricted,
perhaps to the extent that only neurons and their progeni-
tor cells support endogenous L1 activity [19–21]. Somatic
L1 retrotransposition may therefore be an evolutionary
byproduct of TEs being active in the developmental niches
most likely to spread new copies of themselves to as many
germ cells as possible, combined with an inability to pro-
hibit L1 activity in some committed lineages [20–22]. We
presently lack compelling evidence to reject the null
hypothesis that somatic retrotransposition in normal cells
is of little consequence to human biology. Intriguing experi-
mental data do however show that L1 activity is elevated
coincident with environmental stimuli [23–25] and, more
extensively, in psychiatric and neurodevelopmental disor-
ders [26–29]. As a summary view, we propose that retro-
transposons can cause somatic mosaicism in mammals, yet
the frequency, spatiotemporal extent, biological impact, and
molecular processes regulating this phenomenon remain
poorly defined.
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L1 retrotransposons
Several retrotransposon families are currently mobile in
mouse and human [16, 30–34]. In this review, we focus
on L1 as the only element proven, by multiple orthog-
onal approaches, to retrotranspose in somatic cells in
vivo [35]. Annotated L1 sequences occupy nearly 20% of the
human and mouse reference genomes [36, 37]. Although
more than 500,000 L1 copies are found in either species, only
~ 100 and ~ 3000 retrotransposition-competent L1s are
found per individual human [38, 39] or mouse [40–43],
respectively. A full-length, retrotransposition-competent
(donor) L1 is 6-7kbp in length, contains two open reading
frames encoding proteins strictly required for retrotransposi-
tion (ORF1p and ORF2p) and is transcriptionally regulated
by an internal 5′ promoter [44–47] (Fig. 1). Retrotransposi-
tion requires transcription of a polyadenylated mRNA initi-
ated by the canonical L1 promoter, followed by export of the
L1 mRNA to the cytoplasm and translation, yielding ORF1p
and ORF2p [48–50]. Due to cis preference, the L1 mRNA is
bound by ORF1p and ORF2p to form a ribonucleoprotein
(RNP) that can re-enter the nucleus [51–60]. Reverse tran-
scription of the L1 mRNA by ORF2p, primed from a gen-
omic free 3′-OH generated by ORF2p endonuclease activity
[44, 45, 58, 61–63], followed by removal of the L1 mRNA
from the intermediate DNA:RNA hybrid, and second strand
DNA synthesis, generates a new L1 insertion. This molecular
process, termed target-primed reverse transcription (TPRT),
was first established by a seminal study of Bombyx mori R2
retrotransposons [64]. If generated via TPRT, new L1 inser-
tions usually carry specific sequence features, including short
target site duplications (TSDs) and a polyadenine (polyA) tail
(Fig. 1), and integrate into the genome at a degenerate L1
endonuclease motif [44, 46, 65–67]. These TPRT hallmarks
can be used to validate somatic L1 insertions [67]. A fraction
of new L1 insertions transduce DNA from the genomic
flanks of their donor L1 to the integration site, facilitating
identification of the donor sequence (Fig. 1) [36, 60, 68–72].
5′ truncation, internal mutations and the acquisition of re-
pressive epigenetic marks can reduce or abolish the
retrotransposition competence of new L1 insertions [47, 69,
73–77]. Finally, L1 can mobilize other cellular RNAs in trans,
including those produced by Alu and SVA retrotransposons,
adding to L1-driven genome sequence variation [31, 32, 34,
78, 79].
The vast majority of highly active, or “hot”, human

donor L1s belong to the L1-Ta subfamily [33, 38, 39,
80–83] and fewer than 10 hot L1s are present in each
individual [39]. These hot elements are usually highly
polymorphic, with millions of donor L1 alleles poten-
tially yet to be found in the global population [14, 38,
39, 76, 83–85]. Approximately 1 in 150 individuals harbors
a new L1 insertion [86]. By contrast, three L1 subfamilies
(TF, GF, A), defined by their monomeric 5′ promoter and
ORF1 sequences, remain retrotransposition-competent in
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Fig. 1 L1 retrotransposon structure and mobilization scenarios. a. A
human L1-Ta element (top) is 6 kb in length and encodes two
protein-coding open reading frames (ORF1 and ORF2) flanked by 5′
and 3′ UTRs. New L1 insertions are typically flanked by a 3′
polyadenine (An) tract as mRNA polyadenylation is critical to
efficient L1 retrotransposition [61, 62]. An antisense open reading
frame (ORF0, brown rectangle) is located in the 5′UTR and may
facilitate retrotransposition [209]. ORF2p possesses endonuclease
(EN) and reverse transcriptase (RT) activities [44, 45]. The L1 is
transcribed from 5′ sense (canonical) [47] and antisense [208]
promoters, as indicated by black arrows. Target-primed reverse
transcription (TPRT) typically generates short target site duplications
(TSDs, indicated by red triangles) flanking new L1 insertions [44, 46, 64,
66]. A closer view of the L1 5′UTR (bottom) indicates YY1 (purple
rectangle), RUNX (brown rectangle) and SRY family (e.g. SOX2, pink
rectangle) transcription factor binding sites [22, 69, 207]. Numerous
CpG dinucleotides (orange bars) occur throughout this region and, at a
point of sufficient density, form a CpG island (green line) that is
regulated by a complex including MeCP2, HDAC1 and HDAC2 [27, 47,
75, 105]. b. Example L1 mobilization scenarios. Top: A donor L1 is
transcribed from its canonical promoter, generates a polyadenylated
mRNA, and is retrotransposed via TPRT, generating a new L1 insertion
that is 5′ truncated. Middle: Transcription initiated by a promoter
upstream of the donor L1 reads through into the L1 and generates a
spliced (dotted line) mRNA. As a result, the new L1 insertion carries a 5′
transduction. Bottom: Transcription initiates as directed by the
canonical promoter but reads through the L1 polyA signal to an
alternative downstream signal. Reverse transcription and integration of
this mRNA generates a 5′ truncated L1 insertion flanked by a 3′
transduction. Note: the monomeric promoters of the active mouse L1
subfamilies (TF, GF, A) are very different in their structure, and
potentially their regulation, than the human L1-Ta promoter.
Aspects of the figure are adapted from previous works [35, 290]
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the mouse germline [16, 17, 40–43, 87–90]. At least 1 in 8
pups carries a new L1 insertion in inbred C57BL/6 J mice
[13, 18]. As for human L1s, internal mutations can
strongly influence the mobility of individual mouse
L1s [40, 72, 91, 92]. Although the mouse genome
contains many more full-length L1s with intact ORFs
than the human genome [93], it is unknown whether
mouse L1 retrotransposition potential is concentrated
in a similarly small proportion (< 10%) of elements.
The distinct promoter sequences driving L1 transcrip-
tion in mouse and human, and associated differences
in their regulation, may also result in divergent spa-
tiotemporal patterns of L1 expression.
Many, if not most, new L1 insertions are unlikely to gen-

erate a phenotype [94]. L1-mediated mutagenesis can none-
theless severely impact the functional products of genes [95]
and, presumably as a result, host cells have multiple layers
of regulation that limit L1 retrotransposition (Fig. 1, Table 1),
including via epigenetic control of the L1 promoter [20, 27,
96–108] (for relevant recent reviews on L1 host factors and
L1 mutations in disease, please see [109–115]). Even so, L1
mRNA expression and retrotransposition can occur in the
pluripotent cells of the early mouse and human embryo, en-
abling somatic and germline L1 mosaicism prior to lineage
commitment [8, 10, 11, 18, 104, 116–121].

Engineered L1 mobilization during neuronal
differentiation
Neurons and their precursor cells present an exception
to L1 restriction in normal committed lineages [19]. The

first experimental evidence of L1 retrotransposition in
the neuronal lineage was obtained from an engineered
system where a human L1 (L1RP [122]) tagged with an
EGFP reporter gene [116, 123] was introduced into culti-
vated rat neural cells, and into mice as a transgene
(Fig. 2) [21]. Strikingly, GFP+ neurons were found in
transgenic mice whilst few, if any, GFP+ cells were found
in other somatic cell types [21]. Using a different human
L1 (L1.3 [124, 125]) tagged with a similar EGFP cassette,
our laboratory has recently recapitulated this result
(Bodea et al., unpublished data). The L1-EGFP reporter
system has been shown to readily mobilize in embryonic
stem cells, neural stem cells, neuronal precursor cells,
and post-mitotic neurons [19–21, 119, 121], indicating
potential for endogenous L1 activity at various points of
neuronal differentiation in vivo.
Engineered L1-EGFP insertions lacking an intact EGFP

sequence due to severe 5′ truncation, as well as those af-
fected by epigenetic silencing of the heterologous pro-
moter driving EGFP expression [19, 21, 126], can result
in GFP− cells where retrotransposition has actually taken
place (Fig. 2) [126]. As a further caveat, an EGFP-tagged
human L1 introduced as a transgene is also likely not
subject to the same host factor control as exerted in its
native genome. Engineered L1 reporter systems [9, 10,
46, 71, 90, 127, 128] can still provide proof-of-principle
evidence that the L1 machinery may enact retrotranspo-
sition of L1 and other TEs [31, 32, 34, 79, 129] in a given
spatiotemporal context, although, to our knowledge, Alu
or SVA trans mobilization by L1 is yet to be demon-
strated in primary neurons or neuronal precursor cells.
Engineered L1 systems have nonetheless predicted, with
substantial success, L1 activity in cells where endogen-
ous L1 mobilization was later confirmed by genomic as-
says, as for example in the case of the brain.

What is the frequency of endogenous L1
retrotransposition in neurons?
Endogenous L1 retrotransposition is established to occur
in mammalian neurons (for reviews, see [35, 67, 130–
132]). This conclusion is based on genomic analysis of
“bulk” brain tissue [20, 133] and individual neural cells,
with the latter requiring whole-genome amplification
(WGA) [134–137] or reprogramming via nuclear trans-
fer followed by clonal cell amplification [138]. Exemplary
somatic L1 insertions reported to date include two
events carrying 5′ or 3′ transductions [36, 68], which
were recovered from individual human cortical neurons
through WGA followed by whole-genome sequencing
(WGS) [136]. Subsequent insertion site-specific PCR
amplification and capillary sequencing revealed struc-
tural hallmarks consistent with retrotransposition by
TPRT [136]. Analyses employing WGA and targeting
human L1-genome junctions have also recovered

Table 1 Host factors that regulate L1 mobilization

Several proteins inhibit L1 transcription. MeCP2 binds methylated
cytosines in the CpG island core of the L1 promoter [27, 47, 75, 105].
MeCP2 occupancy prevents cytosine hydroxymethylation and L1
de-repression by the activator TET1, and facilitates the recruitment
of methyltransferases affixing the repressive chromatin mark
H3K9me3 [104, 285, 286]. Other factors such as KAP1, the HUSH
complex and MORC2 bind and silence full-length L1s, including
those located in euchromatic genomic regions, again via deposition
of repressive marks [96, 103, 106, 285]. Another key repressor, SOX2,
is a transcription factor that inhibits neuronal gene and L1 expres-
sion during development. Neuronal maturation requires SOX2 down-
regulation, which may explain the potential specificity of L1 mobilization in
neurons [20, 22]. By contrast, the transcription factors RUNX3 and YY1
assist L1 transcription and retrotransposition [69, 207]. Although the
mechanism for L1 activation by RUNX3 is unclear, YY1 appears to direct
transcriptional initiation to the correct (+ 1) L1 start site, and may also
support loops involving the L1 promoter and enhancer elements [69, 287].
Numerous factors [112] also repress L1 at the post-transcriptional level, and
may each do so in multiple ways. For example, the adenosine deaminase
ADAR1 inhibits L1 mobilization via editing dependent and independent
activities, which could involve binding to the L1 RNP [57, 245, 288, 289].
The exonuclease TREX1 has been shown to inhibit retrotransposition
in vitro by depleting L1 ORF1p and altering its subcellular localization
[247], whereas SAMHD1 inhibits L1 mobilization by limiting the
availability of intracellular nucleotides and other mechanisms [244,
246]. Finally, during L1 integration, TPRT intermediate DNA-RNA hybrids are
targeted by host factors, such as APOBEC3A, which deaminates transiently
exposed single-stranded DNA [139].
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neuronal L1 insertions [134, 135, 137]. Using an orthog-
onal approach, and in mouse, Hazen et al. applied WGS
to stem cell clones reprogrammed via nuclear transfer of
olfactory neuron nuclei, and again found somatic L1 in-
sertions mediated by canonical TPRT [138]. Impres-
sively, this work identified 4 somatic L1 insertions in
only 6 reprogrammed neuronal clones, with a false nega-
tive rate of at least 50% [138] as mouse L1 3′ ends are
depleted in Illumina sequencing [18, 35]. These and
other genomic analyses of neuronal genomes have thus
far yielded results highly congruent with experiments
employing the L1-EGFP reporter in vitro and in trans-
genic animals [19–21]. Together with somatic L1 inser-
tions that may accumulate earlier in development [11,
18, 136], these data suggest that L1 mosaicism occurs
relatively often in the mammalian brain. The expected
frequency of L1 retrotransposition in neurons is however
debated [35, 132, 134, 137] and depends on multiple fac-
tors, such as the methods used for WGA, library

preparation and sequencing, how false positive and false
negative rates are calculated, how insertions are vali-
dated, as well as the species, brain region and neuronal
subtype being analyzed. Importantly, L1 insertion map-
ping strategies only find completed retrotransposition
events. Host factors may eliminate TPRT intermediates
in neurons before integration is fully executed (Table 1)
[29, 139, 140] and, for this reason, the frequency of
attempted somatic L1 retrotransposition events may be
higher than what is found by studies of either endogen-
ous or engineered L1 mobilization.
Current estimates of the L1 retrotransposition rate in

human neuronal cells range from 0.04 to 13.7 L1 inser-
tions per neuron [35]. In this context, what is a “low” or
“high” frequency? If we assume that the typical human
brain contains ~ 90 billion neurons [141], and apply a con-
servative denominator of the current lowest estimate of
0.04 unique events per neuron, we would still expect at
least 3.6 billion somatic L1 insertions per human brain,
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the engineered L1 mRNA yields an intact EGFP gene, leading to GFP+ cells (true positives). c. Mobilization of the engineered L1 mRNA may occur through
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however, identify instances where successful retrotransposition is not marked by EGFP expression [19, 46, 123, 126]. e. Finally, retrotransposition of the
engineered L1 mRNA may simply have not occurred in GFP− cells (true negatives)
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and many more events may be shared by multiple cells.
Should this be considered as a low rate? Firstly, brain cells
are far more physiologically and functionally interdepend-
ent than myocytes, hepatocytes, fibroblasts and other
somatic cell types found in the body. Highly intercon-
nected neuronal networks may hence be disproportion-
ately impacted by mutations in “node” cells [142, 143].
Secondly, rather than occurring randomly throughout the
genome, somatic L1 insertions may be found at a signifi-
cantly higher rate in neuronally expressed genes [21, 133,
137], although at this stage the separation of potential
endogenous L1 insertional preference from post-insertion
selection and detection bias is challenging. Thirdly, neuro-
developmental disorders may be caused by somatic muta-
tions penetrating less than 10% of neurons from a given
brain region [144–146] and, moreover, of the two neur-
onal L1 insertions to undergo lineage tracing thus far, one
was found in up to 1.7% of neurons sampled from the cor-
tex [136]. Fourthly, L1 insertions are only one of several
types of genomic variant encountered in the brain [147].
These include aneuploidy and other forms of copy num-
ber variation (CNV) [148–150], as well as single nucleo-
tide variants (SNVs) [151, 152]. Analyses of bulk genomic
DNA extracted from brain tissue have elucidated somatic
Alu and SVA insertions [133, 153], while a single-cell
WGS analysis of a relatively small set of cortical neurons
did not find somatic variants attributed to either trans
mobilized retrotransposon family [136]. L1 insertions are
far larger than an SNV and perhaps carry an average effect
size more similar to that of a copy number or structural
variant, depending on the genomic and biological context
where the variant occurs. These considerations suggest
that, with the improving resolution and expanding scale of
single-cell genomic analysis applied to brain tissue, som-
atic L1 insertions causing a neuronal or cognitive pheno-
type will be identified in the coming years. At present,
however, very few neurons, almost exclusively from a
handful of neurotypical individuals, have been interro-
gated for endogenous L1 retrotransposition events.
Single-cell genomic experiments that exhaustively survey
neuronal subtypes, from numerous individuals and brain
regions, are required to define the typical range of neur-
onal L1 retrotransposition frequency in humans [147]. By
also elucidating the genomic locations of new L1 inser-
tions, and their functional effects, these future studies
should greatly inform our view of whether L1-driven mo-
saicism has the potential to be a phenomenon of bio-
logical importance, building on foundational evidence
now showing that endogenous L1s can jump in the brain.

L1 retrotransposition in non-neuronal brain cells
Somatic L1 insertions have been found in hippocampal
glia by recent single-cell genomic analyses [134, 137]. By
contrast, experiments based on cultured glial cells and

the L1-EGFP system have suggested that retrotransposi-
tion in glia is uncommon [21]. One possible explanation
for the presence of somatic L1 insertions in glia is that
neural stem cells can accommodate retrotransposition
events prior to neuronal commitment, leading to occa-
sional L1 insertions in multipotent precursor cells that
ultimately commit to the glial lineage [20]. Unlike most
neuronal populations, glia can also divide and regenerate
in response to injury [154, 155] and this capacity for cell
cycling may facilitate retrotransposition [59, 156–158].
Comparisons of L1 retrotransposition rate in glia versus
neurons are, for these reasons, not straightforward. Even
if, on average, they accumulate fewer L1 insertions than
neurons [137], individual glia can oversee more than
100,000 synapses [159] and impact the functional output
of the neurons they support [160]. To speculate, one can
therefore envisage a situation where a somatic L1 inser-
tion in a glial cell that supports or protects a large num-
ber of neurons could, by extension, alter the functional
properties of at least some of those neurons, potentially
adding to any direct impact of neuronal L1 insertions
[131]. This may be disproportionately likely in patho-
logic conditions, such as autoimmune diseases where L1
expression in astrocytes for example may be unusually
high [29]. It should again be noted, however, that a mo-
lecular or biological phenotype is yet to be demonstrated
for any somatic L1 insertion arising in a neural cell.
Moreover, glial proliferation and regeneration may buffer
cells from the potential consequences of somatic L1
insertions, lessening the likelihood of downstream
changes to neuronal circuits. Further experimental evi-
dence is required to conclusively demonstrate that som-
atic L1 insertions can arise in committed glia, as
opposed to multipotent progenitor cells. Similarly, L1
retrotransposition is heavily influenced by cellular host
factors (Table 1), but we know little about the host
factors that regulate L1 in neurons, as compared to
those active in glial cells. Thus, it is likely that the L1
mobilization rate in glia and neurons, including neuronal
subtypes, may be reliant upon the differential expression
of L1 regulatory proteins in these cells.

Somatic retrotransposition outside of the brain?
To our knowledge, no single-cell genomic analysis of
somatic retrotransposition has been reported for mam-
malian organs other than the brain, although a few im-
mortalized skin cells have been surveyed by WGS
without a specific search for mosaic TE insertions [151].
This presents a major gap in the field as, at present, we
cannot ascertain whether endogenous L1 retrotransposi-
tion really is enriched in the brain or occurs, for in-
stance, in liver, heart or skin at a rate resembling that
observed for neurons. Bulk sequencing approaches have
found isolated examples of likely somatic L1 insertions
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in normal liver [161] and gastrointestinal tract [162–165]
tissues of cancer patients, as well as mosaic L1 insertions
found in various adult mouse tissues but arising prior to
gastrulation [18]. By contrast, a bulk WGS analysis of 10
clonal cell populations expanded from single skin fibro-
blasts identified no somatic L1 insertions that could be
traced to a parental cell [166]. Transgenic L1-EGFP ani-
mals also present very few GFP+ cells outside of the brain
and gonads [9, 21] and, when employed in vitro, the
L1-EGFP reporter retrotransposes consistently in neural
progenitor cells and post-mitotic neurons [19–21] but not
mesenchymal or hematopoietic stem cells [19].
Taken together, these observations support a model

where L1 insertions arising in the early embryo may
generate low complexity mosaicism in multiple organs,
complemented by ongoing retrotransposition in brain
cells. Other adult cell types may also support somatic
retrotransposition. However, single-cell genomic analyses
of post-mortem, non-brain tissues from human individ-
uals not affected by cancer or other relevant diseases will
be required in the future to definitely assess endogenous
L1 retrotransposition outside of the brain. That L1 mo-
bilizes frequently in many epithelial tumors [72, 161,
162, 164, 165, 167–174], but rarely in brain tumors [168,
169, 175, 176], suggests that dysplastic epithelial cells
may specifically support L1 activity. The discovery of
somatic L1 insertions in the pathologically normal cells
of organs where tumorigenesis has occurred reinforces
this conclusion [161–165] but falls short of demonstrat-
ing retrotransposition in a healthy organ. Nonetheless,
cancer has provided the only examples thus far of
somatic retrotransposition causing a clinical or mo-
lecular phenotype [161, 163, 167, 170, 171], and has
greatly informed our understanding of L1 regulation
in vivo (for relevant reviews, please see [109, 114,
177]).

Transposition in the fly brain
L1 and L1-like retrotransposons are found throughout
the eukaryotic tree of life [93]. In animals, somatic TE
insertions have been almost exclusively reported in hu-
man and rodent tissues and experimental systems [35].
The main exception is Drosophila, where R2, a highly
site-specific, L1-like retrotransposon, and gypsy, an
endogenous retrovirus found to often integrate into spe-
cific genomic hotspots, have been found to mobilize in
somatic cells, including neurons [4–7, 178–180] (for a
review, see [181]). Targeted PCR and resequencing, and
orthogonal reporter assays, have each indicated retro-
transposon integration (e.g. R2 into rRNA genes [64, 182],
gypsy into the ovo gene [183, 184]). However, in contrast
to mammalian systems, genome-wide attempts to map
endogenous TE mobilization in fly somatic cells have to
date not corroborated the aforementioned data obtained

from reporter assays. For example, Perrat et al. applied a
shallow WGS analysis to pooled fly embryos, brain tissue,
and pooled olfactory (αβ) neurons purified from mush-
room body, generating an estimate of 129 somatic TE in-
sertions per αβ neuron [185]. However, a subsequent and
thoughtful WGS analysis of additional αβ neurons, using
improved sequencing depth but still incorporating pooled
neuronal material, and analyzing the evolutionary age of
mobilized TEs, found no evidence for somatic TE trans-
position in the fly brain [186]. This second study reversed
the earlier conclusion of widespread transposon-mediated
genomic heterogeneity in the fly brain [185] and leaves
the question of somatic transposition rate in fly unre-
solved. Interestingly, through additional analyses, the
authors also challenged previous findings of increased
transposition rate in ageing neurons [5] and ovaries ob-
tained from dysgenic hybrids [187] but did not reanalyze
the Perrat et al. sequencing data [186]. Given the afore-
mentioned R2 and gypsy experiments [4–7], we would
postulate that a single-cell genomic analysis of fly neurons,
with appropriate genotypic controls (i.e. non-brain tissue
from the same fly) would identify somatic transposition
events. These would likely occur at a lower frequency than
first reported by Perrat et al. but, given the extensive array
of mobile TE families in the Drosophila genome [188],
perhaps at a higher frequency than seen in mammalian
neurons thus far, and with the caveat that somatic trans-
position in different fly strains may vary greatly in inci-
dence [189]. Aside from the available data obtained from
some mammals and insects, it is currently unknown
whether TEs can mobilize in the brain (or other somatic
tissues) of other animals. The future discovery of somatic
retrotransposition in additional species may greatly assist
in elucidating any functional consequences of TE-derived
mosaicism in neurons.

Donor L1s active in somatic cells: Different LINEs
to retrotransposition
As a rule, L1 epigenetic repression is thought to be
established during early gastrulation and maintained
thereafter to block L1 mobilization (Fig. 3) [19, 20, 117,
119, 190]. DNA methylation of a CpG island [191]
present in the human L1 5′UTR (Fig. 1) is particularly
associated with inhibition of L1 expression [98, 103, 192,
193], at least based on relationships between the methy-
lation and transcriptional output of L1 subfamilies, such
as L1-Ta [19, 20, 118, 121]. The expression of mouse L1
subfamilies is also inversely correlated with their DNA
methylation level [99, 104, 194]. Despite being methyl-
ated, full-length L1s are expressed, at varying abun-
dances, in mature somatic tissues [163, 195, 196]. One
explanation for this discrepancy is that individual L1s
may be regulated in a manner distinct to that of their
corresponding L1 subfamily [72, 84]. For example, while
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genome-wide L1-Ta subfamily mRNA expression may be
low in a given context, an individual L1-Ta copy could
be highly expressed due to the local demethylation of its
promoter. It follows that some donor L1s appear to
mobilize in embryonic cells contributing to the germline
and in somatic cells at very different efficiencies [85] and
present highly variable levels of transcription and
mobilization in various cancer cells [84, 174]. Adding to
this heterogeneity, individual donor L1s may have mul-
tiple alleles that mobilize at disparate rates [76, 83], can
be heterozygous or homozygous at a given genomic
locus, potentially impacting their regulation, and be
fixed or polymorphic in the global population. Repres-
sive epigenetic marks are also not the only means by
which L1s are silenced by the host genome (Table 1)
[112]. General rules for the genome-wide regulation of an
L1 subfamily likely do not apply equally to all L1s in that
family and therefore any mechanistic explanation for

somatic L1 retrotransposition may rely on locus-specific
resolution of L1 repression or activation [72, 84, 163, 171].
As a result, L1 expression and retrotransposition in the
germline and in somatic cells are likely to vary consider-
ably between individuals.
Provided these caveats and considerations, we would

propose multiple proven or hypothetical scenarios for L1
to escape epigenetic repression and contribute to som-
atic genome mosaicism. Firstly, many donor L1s are
indeed likely to be active in the early embryo (Fig. 3, red
scenario) and then repressed in somatic cells, based on
DNA methylation patterns observed for the human
L1-Ta family overall [19, 20, 118, 121] and, consistently,
for several individual hot L1s [121]. Embryonic L1
insertions arising from these elements can be carried
through development to generate somatic mosaicism
[11, 18]. Secondly, a given donor L1 may be expressed in
the embryo and never fully repressed in mature tissues

More complex mosaicism

More lineage restricted retrotransposition

High

None

Donor L1s

L1 mobilization
events during
development

a

b

Time

Donor L1
expression

L1 insertions

Embryogenesis Fetal development Postnatal life

Spatiotemporal extent of new L1 insertions

Fig. 3 Somatic retrotransposition can cause complex genomic mosaicism. a. Donor L1 expression and mobilization during development. A handful of
L1 copies from each individual are highly active, or hot, when tested in vitro [38, 39]. Four scenarios for donor L1s mobilizing in vivo are illustrated
here. Most L1s are repressed [105] during development and do not mobilize, except perhaps due to exceptional circumstances, such as the
availability of an active upstream promoter (e.g. yellow donor L1) [36]. L1 promoter de-repression can however occur during development,
either transiently (e.g. red and orange donor L1s) or durably (e.g. blue donor L1), leading to L1 mRNA and RNP accumulation.
Retrotransposition enacted by the L1 machinery occurs as a function of donor L1 activity in a given spatiotemporal context (blue, red, orange
and yellow arrowheads, matching each donor L1). b. The developmental timing of a given retrotransposition event impacts how many
mature cells carry the new L1 insertion. Early embryonic L1 mobilization events (e.g. blue and red cells indicated by arrowheads and matching
donor L1s by color) may be carried by numerous descendent cells, possibly in different tissues [18]. By contrast, L1 insertions arising later in
development (indicated by orange, blue and yellow arrows) are more restricted in their spatiotemporal extent, and may be found in just one
cell (e.g. a post-mitotic neurons). The resulting somatic genome mosaicism may disproportionately impact the brain [19–21, 23, 25, 27, 133–
138], although further work is required to test whether other organs, such as the liver, also routinely carry somatic L1 insertions [72, 161]
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(Fig. 3, blue scenario). One potential example of this was
provided by an L1 on Chromosome 17 [38] that was
demethylated and expressed in a colorectal tumor, and
also the matched normal colon [163]. This donor L1 is a
relatively new polymorphism (minor allele frequency
0.0036), is hot for retrotransposition in vitro [38] and is
therefore likely to still be mobile during embryogenesis
or in the committed primordial germline [18]. Thirdly, a
donor L1 may be repressed in the embryo but is found
in a genomic locus that does not undergo methylation in
differentiated tissues (Fig. 3, orange scenario). A likely
example of this is an L1 found on Chromosome 22 that
is very active in epithelial tumors [72, 171, 174, 197,
198] but almost inactive in the human germline and in
cultured cells [39, 85]. Interestingly, this element is
intronic to the gene TTC28, which is highly transcribed
in epithelial cells and organs where neoplasia often sup-
ports retrotransposition of the donor L1 [174, 199]
alongside its hypomethylation and transcription in nor-
mal and tumor cells [72, 84, 171, 174]. Finally, a donor
L1 may be repressed in most contexts (Fig. 3, yellow sce-
nario) but, if located downstream of an active endogen-
ous active promoter, transcription directed by this
external promoter may initiate upstream of, and read
through into, the L1, thereby generating an intact L1
mRNA. This arrangement could yield somatic L1 inser-
tions with 5′ transductions [36, 69, 73] and may explain
one of the examples described above in cortical neurons
[135]. In principle, these scenarios present mechanistic
bases for individual L1s escaping repression, being tran-
scribed [84, 163, 195, 196], and producing somatic vari-
ants that are carried by mature differentiated cells where
mobile L1 subfamilies are, overall, marked by epigenetic
and transcriptional silencing [19, 20, 22, 27].

Non-canonical L1-associated somatic genome
variation
Despite proof of somatic retrotransposition in mamma-
lian brain cells, L1 could impact neuronal phenotype via
other routes. For example, a single-cell genomic analysis
[134] of L1 insertions in the human hippocampus identi-
fied TPRT-mediated retrotransposition events, corrobor-
ating a previous study [137]. The authors also reported
examples of somatic genome deletions flanked by germ-
line L1 copies that were detectable in single cells but
could also be PCR amplified in bulk hippocampus DNA
via digital droplet PCR and PCR reactions performed on
very high (500 ng) input template quantities [134]. These
deletions were attributed to DNA damage associated
with L1 endonuclease activity independent of retrotran-
sposition [200]. Notably, the aforementioned WGS ana-
lysis of mouse olfactory neuron clones obtained by
nuclear transfer [138] did not report L1-associated dele-
tions, but also studied fewer neurons from a different

species and neuroanatomical region. The frequency and
distribution of L1-driven genomic deletion events in
humans and other mammals therefore remain to be
determined.
More recently, a WGS analysis of bulk human brain

tissues [201] reported thousands of somatic L1 inser-
tions although, surprisingly, the vast majority of these
were found nested within L1 insertions annotated on the
reference genome. This “L1-within-L1” scenario [202]
presents a significant bioinformatic challenge as sequen-
cing reads can align unreliably to highly repetitive re-
gions [203], and for this reason insertions into existing
younger L1 subfamily (e.g. L1-Ta, L1PA2) copies are
usually filtered by TE insertion calling software [204].
Moreover, the putative somatic L1 insertions appeared
to not involve L1 ORF2p endonuclease activity [44], and
were 3′ truncated, a feature of L1 integration not en-
countered for canonical TPRT-mediated L1 insertions in
normal cells, where 5′ truncation is instead common
[205, 206]. The authors of this study verified a set of
nested germline L1 insertions identified by their
approach and a publicly available long-read sequencing
dataset but, importantly, did not present a similar ana-
lysis of long-read sequencing applied to the same brain
samples already analyzed by WGS, or sequence matched
non-brain tissues [201]. Finally, the proprietary analysis
tools required to identify TE insertions in sequencing
data generated by this study, and other studies based on
the Complete Genomics platform [26], significantly
complicate data sharing and critical re-analysis. L1 may
therefore alter the neuronal genome via unexpected
pathways, but studies in this area require further investi-
gation and replication, including additional validation
and single-cell genomic analyses.

Non-integrated L1 sequences in neural cells
Full-length L1 mRNA transcription can occur in the
normal brain [19, 20, 195, 196]. As well as via DNA
methylation, the L1 promoter is in this context regulated
by a variety of transcription factors, including SOX2
(Fig. 1, Table 1) [20, 22, 27, 47, 69, 105, 207]. An anti-
sense promoter is also present in the human L1 5′UTR
[208], is conserved in primates, and has independent
protein-coding potential [209]. This antisense promoter
initiates transcription in numerous spatiotemporal
contexts and can provide canonical promoters to
protein-coding genes [117, 196, 208–212]. 5′ truncated
L1s can also act as promoters in the brain, perhaps regu-
lated by the Wnt signaling pathway [22, 196]. Thus, mobile
and immobile L1 copies, where the latter are far more nu-
merous, contribute various L1-initiated RNAs to the cellu-
lar environment. These can fulfill cis-regulatory roles and
act globally to regulate chromatin structure [213, 214]. L1
transcription, protein abundance and mobilization rate may
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become uncoupled in vitro upon high L1 mRNA
expression [215]. The production of diverse sense and anti-
sense L1 RNAs, and their cellular abundance, may there-
fore in itself impact neuronal phenotype, independent of
retrotransposition.
Similarly, L1 DNA sequences not integrated into the

host genome, perhaps generated by ectopic reverse tran-
scription primed from other cellular RNAs, aborted
retrotransposition events, or another process involving
the L1 machinery, may be relevant to cellular function
[216–218]. Human and mouse L1 CNV assays applying
multiplex qPCR to template DNAs extracted from tissue
have repeatedly shown variation in L1 DNA content,
when brain regions are compared to each other, and
when brain samples are compared to non-brain tissue
[20, 24, 25, 27, 133, 137, 219]. These studies suggest
that i) the hippocampus is a hotspot for L1 CNV and
ii) brain tissues are generally enriched for L1 DNA,
versus non-brain tissues. As has been proposed previ-
ously [112, 220], qPCR-based L1 CNV assays cannot
alone demonstrate retrotransposition because they do
not discriminate L1 sequences that are, or are not,
integrated into the genome. Host factor defenses
against retrotransposition very likely include the deg-
radation of single-stranded DNA intermediates
produced during TPRT (Table 1) [112, 139] and,
where this process is deficient, cells may accumulate
single-stranded L1 DNA molecules [221]. Control ex-
periments, such as enzymatically treating qPCR input
templates to degrade single-stranded DNA, or select-
ing only high molecular weight DNA via gel electro-
phoresis, may reduce, but cannot exclude, the
potential for non-integrated L1 DNA to dominate
qPCR-based L1 CNV assays [25]. Indeed, these
qPCR-based assays can also return absolute L1 CNV
values reflecting hundreds of new L1 insertions per
cell, depending on normalization approach, when all
single-cell genomic analyses performed to date have
shown retrotransposed products at a rate far lower
than this [35, 67]. It is possible that the qPCR-based
assays are simply confounded by unanticipated tech-
nical issues and are quantitatively unreliable. In our
view, it is more plausible that, alongside L1 RNA ex-
pression, neurons can accumulate L1 DNA molecules
that are not integrated into the nuclear genome.
The origin, composition and cellular impact of

non-integrated L1 DNA sequences remain unclear. They
may arise due to a failure to resolve or degrade TPRT in-
termediates, ectopic L1 reverse transcription where the
products are sequestered in the cytosol, or another
mechanism by which L1 could form stable, extrachro-
mosomal DNA sequences in vivo [216–218, 221–227].
Are these L1 DNAs predominantly single- or
double-stranded? Are they predominantly full-length or

heavily truncated? Notably, qPCR assays targeting L1 at
its 5′UTR, ORF2 or 3′UTR regions can in some cases
generate different L1 CNV results [25, 27], suggesting
that the additional L1 DNA sequences are shorter on
average than genomic L1 copies of the same subfamily,
which supports the hypothesis that interrupted, or un-
usually inefficient, reverse transcription may be involved
in the biogenesis of non-integrated L1 DNA molecules.
Along these lines, when the L1 qPCR assay was applied
to brain tissue obtained from i) Rett syndrome (RTT)
patients, where mutations in the L1 transcriptional re-
pressor MeCP2 (Table 1) [27, 75, 228, 229] cause a
severe neurodevelopmental disorder, and ii) an MeCP2--
mutant RTT mouse model, significant L1 copy number
gain was observed in either species when L1 DNA con-
tent was measured at ORF2, when compared to controls
[27]. L1 CNV was not, however, observed when mea-
sured at the 5′UTR [27]. It is relevant that conditional
restoration of MeCP2 function in MeCP2-mutant mice
leads to robust reversal of neurological phenotype [230].
In work performed recently in our laboratory, we found
that phenotypic reversal in these animals was accompan-
ied by L1 DNA content returning from elevated to
wild-type levels after rescue, when measured by qPCR
against ORF2 (Morell et al., unpublished data).
These observations altogether suggest that at least

some of the additional L1 DNA content reported in
RTT brain samples may not be incorporated into the
nuclear genome. More broadly, the increased presence
of L1 and other TEs in neurological disorders [6, 27–29,
231–234] elucidated by qPCR-based assays therefore
may not involve new TE insertions, and any associated
potential toxicity [235] may not be due to retrotranspo-
sition. It is tempting to speculate that the accumulation
of non-integrated L1 DNA, for example via failed or in-
complete elimination of TPRT intermediates [52, 139,
236], could still cause genomic lesions in neuronal genes
[237] or otherwise “distract” host factors which, in
addition to guarding against L1 integration, often regu-
late other cellular processes [112]. L1 activity in the
brain is potentially relevant to neuronal physiology and
genome stability beyond any impact of somatic retro-
transposition, although further experiments are required
to demonstrate the biogenesis of non-integrated L1
DNA sequences in neurons and other cells.

Does elevated L1 content in the brain trigger
autoimmunity?
Endogenous and exogenous nucleic acids may trigger
immune responses mediated by various sensor pathways
[for reviews, see [238, 239]]. As well as in RTT, elevated
L1 DNA content has been reported in neurological dis-
orders associated with autoimmunity, immunodeficiency
and maternal infection, including Aicardi-Goutières
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syndrome [29, 137, 221], ataxia telangiectasia [74] and
schizophrenia [26]. As for normal individuals, the mag-
nitude of L1 CNV reported in these disorders appears to
far exceed what would plausibly be due to somatic retro-
transposition and could be due to an accumulation of L1
DNA molecules that are not integrated into the nuclear
genome [240]. This scenario would have major implica-
tions for the treatment of any condition proven to be
caused by L1 activity because the reversal of any associ-
ated symptoms would no longer be dependent on the
challenging excision of somatic L1 insertions from neur-
onal genomes. Instead, processes leading to an accumu-
lation of non-integrated single- or double-stranded L1
DNA could be targeted, for example, with reverse tran-
scriptase inhibitors [241] or through targeted silencing
[242] of heavily transcribed L1 copies [84].
Aicardi-Goutières syndrome (AGS) is a very rare inter-

feronopathy that provides arguably the best developed
example of a neurological phenotype potentially linked
to L1-associated autoimmunity. Genetic analyses of AGS
patients have revealed mutations most commonly in the
genes TREX1, SAMHD1, ADAR1, RNASEH2A, RNA-
SEH2B, RNASEH2C and IFIH1 [239, 243]. Most of these
genes encode factors that have been shown to regulate
retrotransposon activity (Table 1) [221, 234, 244–251],
supporting the hypothesis that the cytosolic accumula-
tion of endogenous nucleic acids in AGS generates an
interferon response [239, 252–254]. TREX1, for ex-
ample, is an established exonuclease of aberrant
single-stranded intermediates generated during DNA
replication [255]. An abundance of single-stranded L1
DNA has been reported in human and mouse
TREX1-deficient cells [29, 221], whilst a single-cell gen-
omic analysis of neurons obtained from one AGS patient
carrying SAMHD1 mutations indicated that somatic L1
insertions occurred at a rate similar to that of controls
[137]. Whilst these experiments suggest L1 might play a
role in AGS, the mechanism via which single-stranded
L1 DNA could generate an abnormal neuronal pheno-
type is largely unclear, and it remains plausible that the
accumulation of L1 DNA in AGS is a largely inconse-
quential result of nuclease mutations.
Intriguingly, a recent study demonstrated that media

obtained from TREX1-deficient human astrocytes was
toxic to healthy neurons, whereas media from
TREX1-deficient astrocytes treated with L1 reverse tran-
scriptase inhibitors was significantly less toxic [29]. The
authors ascribed this toxicity to an interferon response
due to an accumulation of cytosolic single-stranded L1
DNA in astrocytes [29, 256]. By contrast, another recent
work found that treatment of TREX1 mutant mice with
L1 reverse transcriptase inhibitors had no impact on
interferon response or the retrotransposition frequency
of an engineered L1 reporter gene in vivo [257].

Previously, different reverse transcriptase inhibitors have
been shown to rescue [258] or not rescue [221] the le-
thal myocarditis phenotype of TREX1-deficient mice.
These findings raise the prospect that a biochemical
mechanism apart from the inhibition of L1 reverse tran-
scriptase activity, perhaps instead targeting inflamma-
tion, is responsible for the amelioration of AGS
phenotype [259].
At this stage, the etiological role of TREX1 in control-

ling L1 and other endogenous retrotransposons in AGS
requires further study. It should however be noted that
i) the somewhat opposing results detailed above for L1
were obtained using different species and cell types, ii)
assays measuring engineered and endogenous L1 activity
can provide different results [29, 221, 247, 257], iii) engi-
neered L1 retrotransposition frequency and potentially
immunogenic single-stranded L1 DNA content are not
equivalent, and iv) host factors and reverse transcriptase
inhibitors may act via multiple direct and indirect path-
ways to limit L1 activity. For example, instead of restrict-
ing L1 primarily by exonuclease activity, TREX1 may
alter the subcellular localization of L1 ORF1p, and
thereby reduce opportunities for cells to accumulate L1
DNA, whether via retrotransposition or another mech-
anism [221, 247].
As for TREX1, RNaseH2 has been alternatively re-

ported as being a negative or positive regulator of L1
retrotransposition [249, 250, 260]. Some eukaryotic
TEs encode ribonuclease proteins to facilitate the re-
moval of their template RNA after reverse transcrip-
tion [261–263], and also degrade other cellular
DNA:RNA hybrids, supporting a positive role for
RNaseH2 in L1 retrotransposition. Alternatively, bio-
chemical assays using the Bombyx mori R2 retrotrans-
poson previously revealed that the RNA in a hybrid
DNA:RNA molecule generated during TPRT could be
displaced during second strand DNA synthesis with-
out the apparent involvement of a ribonuclease [264].
Ribonuclease mediated degradation of the RNA strand
of hybrid L1 DNA:RNA molecules prior to second
strand synthesis has been demonstrated in vitro to
expose the L1 cDNA to deamination, suggesting that
ribonuclease activity may facilitate editing or 5′ trun-
cation of L1 cDNAs in vivo [139]. Nonetheless, we
favor the view that the ribonuclease activity of RNa-
seH2 assists L1 mobility in vivo, even if other RNa-
seH2 functions are ultimately shown to inhibit
retrotransposition. Overall, the available literature
points to a potential role for L1 in the etiology and
clinical management of AGS and other neurodevelop-
mental disorders associated with autoimmunity. Sig-
nificant work is required to reconcile the somewhat
opposing results reported for the use of reverse tran-
scriptase inhibitors in disparate AGS experimental
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models, and to therefore clarify whether L1 activity is
a pathogenic or coincidental feature of this disease.

Conclusions
Somatic mosaicism represents an intriguing and under-
explored form of genetic and biological variation in
mammals. Although L1 retrotransposon-driven mosai-
cism is now established to occur in brain cells, any im-
pact of this phenomenon upon normal and abnormal
neurobiological processes remains undemonstrated. Des-
pite the recent development of tools, including
single-cell genome, epigenome and transcriptome se-
quencing [151, 265–272], in some cases employed in
parallel [for a review, see [273]], as well as CRISPR-Cas9
based genetic and epigenetic engineering [242, 274–
277], conclusive proof is yet to be provided of any indi-
vidual somatic L1 insertion arising in the neuronal
lineage that has generated a molecular, biochemical or
behavioral phenotype in vivo. Given the effect size of L1
insertions in genes, and the frequency of endogenous L1
insertions arising during neurodevelopment, adult
neurogenesis or in post-mitotic neurons, it is likely that
some L1 insertions could induce a biologically relevant
neuronal phenotype. We believe such examples will be
found in future studies. It is also plausible that L1 may
impact neurobiology primarily through mechanisms not
involving resolved retrotransposition events, given re-
cent observations from neurological diseases, such as
RTT and AGS.
Experiments to test the impact of individual somatic

L1 insertions present a major challenge. Work in this
area could be greatly accelerated through: i) the develop-
ment of methods to reliably survey genome structural
variation and transcription, genome-wide and from the
same cell, using human brain tissue obtained
post-mortem, or from tissue obtained during brain sur-
gery [278, 279], or from animal models, ii) the
large-scale production of WGS data from individual
brain cells, retaining neuronal subtype information, as
well as from non-brain cells, and iii) the ability to intro-
duce, via CRISPR-Cas9 or another approach, L1 inser-
tions found in vivo into cultured neurons, organoids or
even animal models, to assess their impact upon the
transcriptional and regulatory landscapes when estab-
lished in a homogenous cellular population. Long-read
sequencing approaches, such as those developed by Pac-
Bio and Oxford Nanopore, which can identify TPRT
hallmarks ab initio by resolving L1 integration sites in
full, may also prove particularly useful, even if simply ap-
plied at high depth to DNA extracted from brain tissue
[280–284]. Beyond surveying the spatiotemporal extent
and potential immediate functional impact of L1 mosai-
cism, we also need to be able to modulate endogenous
retrotransposition and evaluate the consequences, if any,

upon behavior. In neurological disorders where elevated
L1 activity is apparent, it would be valuable to assess the
impact restricting that activity has upon symptoms.
These are long term and challenging experiments. How-
ever, neuronal genome mosaicism driven by engineered
L1 retrotransposition was first reported in 2005 [21] and
has only been definitively shown to be recapitulated by
endogenous L1s in vivo quite recently [133–138].
Therefore, equipped with foundational knowledge, and
improving tools, the field is well positioned to move rap-
idly towards establishing any functional impact of L1
mosaicism in the soma.
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